3.92 \(\int \frac{(g \cos (e+f x))^{3/2} \sqrt{a+a \sin (e+f x)}}{\sqrt{c-c \sin (e+f x)}} \, dx\)

Optimal. Leaf size=122 \[ \frac{2 a g \sqrt{\cos (e+f x)} E\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{g \cos (e+f x)}}{f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}-\frac{2 a (g \cos (e+f x))^{5/2}}{3 f g \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

[Out]

(-2*a*(g*Cos[e + f*x])^(5/2))/(3*f*g*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (2*a*g*Sqrt[Cos[e +
f*x]]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.569529, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 42, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {2851, 2842, 2640, 2639} \[ \frac{2 a g \sqrt{\cos (e+f x)} E\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{g \cos (e+f x)}}{f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}-\frac{2 a (g \cos (e+f x))^{5/2}}{3 f g \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[((g*Cos[e + f*x])^(3/2)*Sqrt[a + a*Sin[e + f*x]])/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

(-2*a*(g*Cos[e + f*x])^(5/2))/(3*f*g*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (2*a*g*Sqrt[Cos[e +
f*x]]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2851

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e +
 f*x])^n)/(f*g*(m + n + p)), x] + Dist[(a*(2*m + p - 1))/(m + n + p), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && Eq
Q[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + n + p, 0] &&  !LtQ[0, n, m] && IntegersQ[2*m, 2*n, 2*p]

Rule 2842

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(g*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(g \cos (e+f x))^{3/2} \sqrt{a+a \sin (e+f x)}}{\sqrt{c-c \sin (e+f x)}} \, dx &=-\frac{2 a (g \cos (e+f x))^{5/2}}{3 f g \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}+a \int \frac{(g \cos (e+f x))^{3/2}}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}} \, dx\\ &=-\frac{2 a (g \cos (e+f x))^{5/2}}{3 f g \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}+\frac{(a g \cos (e+f x)) \int \sqrt{g \cos (e+f x)} \, dx}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=-\frac{2 a (g \cos (e+f x))^{5/2}}{3 f g \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}+\frac{\left (a g \sqrt{\cos (e+f x)} \sqrt{g \cos (e+f x)}\right ) \int \sqrt{\cos (e+f x)} \, dx}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=-\frac{2 a (g \cos (e+f x))^{5/2}}{3 f g \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}+\frac{2 a g \sqrt{\cos (e+f x)} \sqrt{g \cos (e+f x)} E\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 2.00108, size = 197, normalized size = 1.61 \[ -\frac{i g \sqrt{i c e^{-i (e+f x)} \left (e^{i (e+f x)}-i\right )^2} \sqrt{g e^{-i (e+f x)} \left (1+e^{2 i (e+f x)}\right )} \left (4 e^{3 i (e+f x)} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-e^{2 i (e+f x)}\right )-i \sqrt{1+e^{2 i (e+f x)}} \left (-6 i e^{i (e+f x)}+e^{2 i (e+f x)}+1\right )\right ) \sqrt{a (\sin (e+f x)+1)}}{3 c f \left (1+e^{2 i (e+f x)}\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*Sqrt[a + a*Sin[e + f*x]])/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

((-I/3)*Sqrt[(I*c*(-I + E^(I*(e + f*x)))^2)/E^(I*(e + f*x))]*g*Sqrt[((1 + E^((2*I)*(e + f*x)))*g)/E^(I*(e + f*
x))]*((-I)*Sqrt[1 + E^((2*I)*(e + f*x))]*(1 - (6*I)*E^(I*(e + f*x)) + E^((2*I)*(e + f*x))) + 4*E^((3*I)*(e + f
*x))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(e + f*x))])*Sqrt[a*(1 + Sin[e + f*x])])/(c*(1 + E^((2*I)*(e +
 f*x)))^(3/2)*f)

________________________________________________________________________________________

Maple [C]  time = 0.354, size = 361, normalized size = 3. \begin{align*} -{\frac{2}{3\,f \left ( 1+\sin \left ( fx+e \right ) \right ) \sin \left ( fx+e \right ) \cos \left ( fx+e \right ) } \left ( g\cos \left ( fx+e \right ) \right ) ^{{\frac{3}{2}}}\sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) } \left ( 3\,i\sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ) \cos \left ( fx+e \right ){\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }},i \right ) -3\,i\cos \left ( fx+e \right ){\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }},i \right ) \sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ) +3\,i\sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ){\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }},i \right ) -3\,i{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }},i \right ) \sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ) + \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) +3\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}-3\,\cos \left ( fx+e \right ) \right ){\frac{1}{\sqrt{-c \left ( -1+\sin \left ( fx+e \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x)

[Out]

-2/3/f*(g*cos(f*x+e))^(3/2)*(a*(1+sin(f*x+e)))^(1/2)*(3*I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))
^(1/2)*sin(f*x+e)*cos(f*x+e)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)-3*I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e
)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)*cos(f*x+e)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)+3*I*(1/(cos(f*x+e)+1))
^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)-3*I*(1/(cos(f*x+
e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)+cos(f*x+e)
^2*sin(f*x+e)+3*cos(f*x+e)^2-3*cos(f*x+e))/(1+sin(f*x+e))/sin(f*x+e)/cos(f*x+e)/(-c*(-1+sin(f*x+e)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \cos \left (f x + e\right )\right )^{\frac{3}{2}} \sqrt{a \sin \left (f x + e\right ) + a}}{\sqrt{-c \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*sqrt(a*sin(f*x + e) + a)/sqrt(-c*sin(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{g \cos \left (f x + e\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c} g \cos \left (f x + e\right )}{c \sin \left (f x + e\right ) - c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*g*cos(f*x + e)/(c*sin(f*x +
e) - c), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))**(3/2)*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \cos \left (f x + e\right )\right )^{\frac{3}{2}} \sqrt{a \sin \left (f x + e\right ) + a}}{\sqrt{-c \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)*sqrt(a*sin(f*x + e) + a)/sqrt(-c*sin(f*x + e) + c), x)